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Abstract 
Feedforward neural networks have been used for kinetic parameters determination and signal 

filtering in differential scanning calorimetry. The proper learning function was chosen and the 
network topology was optimized, using an empiric procedure. The learning process was achieved 
using simulated thermoanalytical curves. The resilient-propagation algorithm have led to the best 
minimization of the error computed over all the patterns. Relative errors on the thermodynamic 
and kinetic parameters were evaluated and compared to those obtained with the usual thermal 
analysis methods (single scan methods). The errors are much lower, especially in presence of 
noisy signals. Then, our program was adapted to simulate thermal effects with known thermody- 
namic and kinetic parameters, generated electrically, using a PC computer and an electronic in- 
terface on the serial port. These thermal effects have been generated by using an inconel thread. 

Keywords: deconvolution, differential scanning calorimetry, feedforward neural networks, ki- 
netics, signal filtering, simulations, thermal analysis 

Introduction 

Artificial neural networks is a computing approach based on an analogy with the 
working of the nervous system of the brain, in which connections organize the units 
(neurons) into networks. One of the main advantages of the artificial neural net- 
works is that they are massively parallel and can improve their performances 
through examples by a dynamic learning process. Therefore, the use of artificial 
neural networks allows a modelling of complex systems by way of interconnection 
weights, without requiring the explicit formulation of the relationships that may ex- 
ist between variables. These weights are generated by the training that starts from 
random values of the coefficients (bias). It has been established that a standard lay- 
ered feedforward network architecture can approximate any function of interest, 
provided that a sufficient number of hidden neurons are used [1, 2]. Furthermore, 
artificial neural networks are highly tolerant to noisy or missing data in the training 
or test set samples, and suitable for pattern recognition, reconstruction applica- 
tions, filtering or time-series predictions. 

One of the greatest developments of these last years is an attempt to extracting 
kinetic information of a transformation by thermal analysis [3]. An application of 
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artificial neural networks to DSC is presented in this study, and is generalizable to 
any thermal analysis [4]. 

Deconvolution of differential scanning calorimetric curves 

Usual deconvolution methods 

Several methods have been proposed for the determination of thermokinetics 
and are reported in the work of Cesari et al. [5]. Four kinds of methods used for 
the reconstruction of thermogenesis from experimental calorimetric data may be 
distinguished: Fourier transform analysis, dynamic optimization method, method 
using the state functions, differentiation method (numerical inverse filters). Never- 
theless, these methods may be sensitive to noise. 

New approach developped 

Some workers have already reported on several applications in which neural net- 
works have been used with success for deconvolution purposes in various fields of 
research [6-9], but not for calorimetric field. Furthermore, in addition to the high 
capability of neural networks to deal with nonlinear problems, it is known that they 
are highly tolerant to noise, and numerous authors have reported on very good ro- 
bustness in the presence of noisy signals [10-12]. 

In the new approach developped in our laboratory, the idea is to use simulated 
thermal effects with known thermodynamic and kinetic parameters, generated elec- 
trically, using a PC computer and an electronic interface on the serial port. These 
thermal effects have been generated by using an inconel thread and recorded by the 
apparatus as for an experimental study. The differential scanning calorimeter used 
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Fig.  1 Electrically generated and measured signals at 1, 2, 5, 10 and 20 K min -~ 
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was a DSC-111 heat-flux calorimeter (Setaram). This provides a way to evaluate the 
transfer function for a transformation occuring during a certain interval of time, de- 
pending on its kinetic parameters and not only applicable to a Dirac pulse or an unit 
step function. Figure 1 shows the various thermoanalytical curves obtained at 1, 2, 
5, 10 and 20 K rain -1 for electrically generated signals. Signals of Fig. 1 are the 
electric signals in Volts; for calorimetric purposes these signals are transformed in 
Watts (or roW) by an appropriate calibration. 

The aim of this first study is to evaluate the ability of neural networks for the 
determination of thermodynamic and kinetic parameters from the analysis of a ther- 
moanalytical curve, to find the network topology that best modelises the DSC sig- 
nals, and to optimise the network topology. In order to simulate experimental data, 
neural networks performances were investigated using simulated noisy signals. 

N e t w o r k  p e r f o r m a n c e  eva luat ion  

Our previous studies [3, 13] were based on the minimization of a criterion 
called LSM that expresses the accuracy of the fit between experimental (i.e. a ther- 
mogram of a transformation) and calculated data (i.e. the values computed from the 
kinetic parameters of the transformation) and that is expressed as: 

N 

LSM = ~ Z(Yi,exp --Yi.eale )2 (11 

where N is the number of recorded points of a thermoanalytical curve and Yi repre- 
sents the heat flow measured (exp) or calculated (talc) from the kinetic parameters, 
at time i. 

On the other hand, the accuracy of the net may be evaluated, for supervised 
learning algorithms, by computing a parameter which represents the residual be- 
tween outputs (O) and targets values (T), we computed the residuals as, 

(2) 

where p represents the number of patterns. In addition to this parameter the neural 
network simulator used [14] gives an evaluation of the global error (E) of the net 
over all the patterns and all the outputs. The error E is defined as: 

p [I 

E = y y.(o U - ru)  (3) 
j= l  i=l 

where n is the dimensionality of me output vector (here me dimensionality of this 
vector is 3) and p the number of patterns used in the learning phase. This parameter 
has to be minimized during the learning phase where the mapping of the input vec- 
tor on to the output vector determines the connection weights of the net. 
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Numerical simulations of thermoanalytical curves 

The networks were trained and tested using simulated thermoanalytical curves 
with a computer code previously described [13, 15]. These simulations consisted in 
the computation of the temperature (Ti), of the power (PO and the conversion range 
(cx~) of a known transformation from known kinetic parameters, sampling rate, heat- 
ing rate (V=5*C rain -l here), temperature of the beginning of the phenomenon, 
function f(ai) and enthalpy (Q). The general kinetic equation for the reaction rate 
is expressed as, 

d(L~- ) = kf(txi) i (4) 

where oq=Hi/Q for a DSC analysis and where the dependence of the rate constant 
(ki) vs. the temperature is given by the Arrhenius law, ki=koexp(-Ea/RTi). So that, 
E a, k o and R represent respectively the activation energy, the pre-exponential factor 
and the gas constant (8.31 J mol-'K-1), and Hi the partial area computed at time i. 
We can write: 

dH = Qk.f(ai) 
-&-i 

where (dH/dt)i represents the heat flux (P.~ of a flux-meter DSC scan at time i. 

(5) 

N e t w o r k  description 
Input, output and patterns definition 

In  this study, the set of examples (patterns) is constitued by various simulated 
thermograms, used for training. Each thermoanalytical curve of the set was dis- 
cretised in 320 inputs presented to the network. These inputs were generated using 
a constant value for the order of reaction (n=2),  while the activation energy (Ea) 
was varying from 74 to 80 kJ tool -~ and the logarithm of the pre-exponential factor 
from 18 to 20, according to the kinetic parameters experimentaly found, for the re- 
action of our interest [16]. The input vector is constructed with the various powers, 
and the number of inputs had been adjusted in order to optimize the network con- 
figuration. The output vector, called,  target ~ for the learning phase, is constructed 
with the three parameters to be determined i.e., Q, Ea and lnk o (because n was set 
constant here), and are the same as the parameters used to construct the thermoana- 
lytical curve. They are sufficient to define the thermoanalytical curve in the case of 
a single step process. In order to simulate experimental data, additional gaussian 
noise may be added to the patterns. In that case, simulated thermoanalytical curves 
were computed in the same way, and then noise was added, so that the output vector 
(target) may be constructed with the known kinetic and thermodynamic parameters 
obtained for the signal without noise, and the network was so trained to identify the 
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noise. The standard deviation of the gaussian noise used for all this study is of 0.2 
and the mean is 0. This value was chosen in regard to the standard deviation of the 
noise of the apparatus used (DSC-111 Setaram). In the temperature domain stud- 
ied, the distribution of this noise can be considered as gaussian, and the standard 
deviation was experimentally evaluated of about 0.07, so that the experimental 
noise is greatly inferior to the value used in simulated data. 

For the test set, the patterns are generated in the same way, but correspond to 
different values of the thermodynamic and kinetic parameters, choosen in the range 
of the values used in the training set. 

Learning function 
Several algorithms have been checked and the best results were obtained using 

the "resilient propagation", developed by Riedmiller [17]. It is not the purpose of 
the present paper to give an extensive description of any of them, and more infor- 
mation on these algorithms may be found in the references [18-19]. A comparison 
of the results obtained using the well known backpropagation and the resilient- 
propagation algorithms is given in the result part. For more details on this algo- 
rithm as well as on the backpropmomentum or the backpercolation algorithms, also 
presented as comparison in this study, the reader may consult references [17-19]. 

Experimental 
The selection of the learning function, of the number of patterns and of the num- 

ber of inputs, was made using noiseless data and one hidden layer with fifteen units. 
In a first step, optimization of the network was realised by comparing the errors (E 
formula 10) after 500 learning cycles. This value was chosen because of the limita- 
tion in the precision of the software used. In fact, the variables are set in SNNS [14] 
as ,float, whose precision may be too limited for this kind of calculation using 
simulated phenomena. The error values (E) quickly reach, in some cases, the limit 
of the precision on the numbers. Finally, the type ,float, has been changed in the 
program used (about 600 modifications) by ,double, precision, in regard to a first 
set of results obtained for the test phase, for which the precision of the ,,float,> was 
not sufficient. 

Learning algorithm, number of patterns and network topology 

The learning parameters used for each function are set out in Table 1. The su- 
periority of resilient-propagation is obvious, The activation energy and logarithm of 
the pre-exponential factor values were i~remented from E a =74 to E~ = 80 kJ mo1-1 

. . . .  i - f  

and Ink o = 18 to Ink o =20, using varlous mcrementatlon steps. Among the tested 
�9 f . . �9 

values, t~ae lowest errors were obtained usmg 420 patterns, that ~s to say a step on 
the activation energy of 300 and a step on the logarithm of the pre-exponential fac- 
tor of 0.1 (Table 2). An optimal value of 320 inputs was kept for all the networks 
tested in the following. Nevertheless, we think that this value should be optimized 
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Table 1 Simulated data without noise: errors (E) obtained using various learning algorithms, 
after 500 and 3000 learning cycles 

Algorithms E' (500 cycles) E'  (3000 cycles) 

backpropagation b 0.09836 0.09289 

backpropmomentum c 0.09761 0.07690 

quickpropagation d 0.09933 0.04592 

backpercolation e 0.04291 0.01437 

resilient-propagation f 0.00005 0.00003 

U 

n is the dimensionality of the output vector and p the number of patterns used in the learning phase 
b learning rate~=0.1 
c learning rate vl =0.1, momentum term p=0.1 
d learning rate "q =0.1, maximum growth parameter p = 0 . 1  
e global error magnification ~.= 1, O = 1 
f A o =0.1, Am~--50 [14] 

by selecting a great number of points in the parts of the thermograms containing 
more information (beginning, top, inflexions and end of peak), and less in the other 
parts. For noiseless data, the lowest error was obtained using one hidden layer with 
fifteen neurons (Table 3). Nevertheless, there is no general theory for the prediction 
of the best topology to choose, so that an experimental procedure is generally used. 
For simulated data with gaussian noise, the following procedure was used to opti- 
mize the network topology: when the number of neurons was selected for the first 
hidden layer, a second layer was added and the number of neurons leading to the 
lowest error retained, and so on. A hidden layer was only added if the error was 
decreased. A network with only one hidden layer would lead to satisfactory results 

Table 2 Simulated data without noise: influence of the number of patterns obtained using various 
incrementation steps, after 500 learning cycles* 

Step on E~ Step on Ink o Srb(Q) Srb(E,) Srb(Inko) 

300 0.05 4.7.10 -9 4.14-10 4 4.30-10 -~ 

300 0.I 1.2.10 -~ 9.08.10 -7 1.51.I0 ~ 

300 0.2 1.2.10 -7 1.20-10 "s 4.34-10 -3 

I00 O. 1 7.2.10-9 3.25.10 "~ 4.22.10 -6 

150 O. I 3.1.10-9 3.69-10 4 5.05.10 "~ 

200 0.1 4.9.10 "~ 3.12.10 "~ 2.80.10 "~ 

300 0.1 1.2-10 "~ 9.08-10 -~ 1.51.10 -6 

a same learning parameters and network topology as in Table 1 

b Sr = (1~ ~(Oj - Tj) 2 

tpJ,., 
p represents the number of patterns, and Sr is computed for the learning set of examples 
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Table 3 Simulated data without noise: errors (E) obtained for various numbers of neurons of the 
first hidden layer, after 500 learning cycles a 

Number of neurons E b 
10 0.0310 

12 0.0521 

15 0.0225 

17 0.0488 
20 0.0335 
50 0.0402 

100 0.2740 
a same learning parameters and network topology as in Table 1 
b see Table 1 

for noiseless data, while when noise is added the learning is improved by using sev- 
eral hidden layers. Our results confirm the statement of Ishiwatari et al.  [20], who 
found more robustness for five-layered network (i.e. three hidden layers) than for 
classical three-layered network, in the presence of noise. 

Finally, the network used is constituted by an input layer of 320 units, 3 hidden lay- 
ers with respectively 15, 20 and 20 units, and an output layer with 3 units. The inputs 
were generated using simulated thermograms, and the targets were the parameters used 
for the simulation of the thermograms. The learning phase was achieved on 420 pat- 
terns, and the learning function retained was the resilient-propagation. 

Results and discussion 

Comparisons between the backpropagation and the resilient-propagation algo- 
rithrns may be drawn from the evolution of the error vs. the number of learning cy- 
cles with noiseless data. The backpropagation algorithm always led to higher values 
of the error E and the results are slightly improved by performing more learning cy- 
cles. The error value is respectively of 9.8.10 -2 after 500 cycles and 9.3.10 -2 after 
3000 cycles, while for the resilient-propagation, these values are respectively 5.10 -5 
and 2.52.10 -5 (Table 1). In the classic ,gradient descent~ minimization technique 
used in the conventional backpropagation algorithm, the learning rate must be de- 
fined at the beginning of the training. The choice of the learning rate cannot be op- 
timal because this parameter depends on the shape of the error function, which 
changes with the learning task. For the resilient-propagation the adaptative individ- 
ual update-value Aij introduced for each weight and modified during the learning 
process according to the learning rule, improve the convergence. This method is ro- 
bust with respect to the choice of the initial learning parameter. The resilient propa- 
gation algorithm out-performs backpropagafion because of the existence of local min- 
ima. The existence of such minima had also be shown by comparing various multiple 
linear regression algorithms, in a previous study on single scan methods [15]. 
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Fig. 2 Resilient-propagation algorithm: evolution of the error (E) for the learning set vs. the 
number of learning cycles for noiseless data (o=0.0)  and data with gaussian power 
noise ( i f = 0 . 2 )  
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Hg. 3 Resilient-propagation algorithm: evolution of Sr (mean squared residuals) vs. the num- 
ber of learning cycles for the activation energy 

Excepted for the resilient-propagation, the backpercolation and the quickpropa- 
gation algorithms led to the best results, but the error is much higher compared to 
the resilient-propagation (Table 1). For the resilient-propagation algorithm the er- 
rors of the learning phase presented in Fig. 2, have been drawn vs. the number of 
learning cycles for noiseless and noisy data. In such a case, the SNNS simulator 
gives the error value for the outputs every 10000 cycles. The errors show a rapid 
decrease to a trmal value after 100000 cycles of respectively 1.91.10 -7 and 1.34.10 -6 
for noiseless data and for noisy data (0=0.2) .  

In Fig. 3 the evolution of the Sr for the various targets is presented vs. the num- 
ber of learning cycles, for simulated data without noise. Comparisons can be made 
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Fig. 4 Resilient-propagation algorithm: evolution of Sr (mean squared residuals) vs. the num- 
ber of learning cycles for the activation energy, gaussian noise o=0.2 
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Fig. 5 Resilient-propagation algorithm: evolution of Sr (mean squared residuals) vs. the number 
of learning cycles for the logarithm of the pre-ex_ponential factor, gaussian noise a=0.2 

between the values obtained for the learning and for the test sets (which are differ- 
ent sets). These variations may be compared to those obtained for simulated noisy 
data (Fig. 4). In that case, the Sr values are always decreased when the number of 
learning cycles is increased, as is obtained with noiseless data. Nevertheless, this 
parameter increases for the test set after 40000 cycles, for the logarithm of the pre- 
exponential factor (Fig. 5). This observation indicates that above this value the net- 
work is no longer trained to learn pertinent information and tend to learn noise, 
This corresponds to what is generally called overtraining and implies that the learn- 
ing phase must be stopped at this stage of the learning process. 
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In order to give comparisons between the results presented in this study and those 
obtained with the usual methods (Achar-Brindley-Sharp or multiple linear regression 
methods) used in thermal analysis and presented elsewhere [4, 15], absolute relative 
errors were computed. These errors were computed for a parameter x, as: 

er(x) = I ( T -  o)/r  I (6) 

where T represents the target value of the parameter x and O the output estimated 
by the network. As an example, the relative errors can be found in Table 4 for data 
with and without noise. In the case of noisy data, average relative errors obtained 
for five sets of thermograms. The kinetic parameters of reference were always those 
specified in Table 4. 

Table 4 Simulated data with various amounts of gaussian noise a on the power [15]: average 
relative errors for the Achar-Brindley-Sharp (ABS) and multiple linear regression 
(MLR(n)) methods, for five sets of thermoanalytical curves 

Method er(n) a'b er(Inko) a'b er(Ea) a'b 

0=0 er(Q)b -- 9 .66 .10  -~ 

ABS 5.00.10 -3 2.52-10 "4 4.17-10-4 

MLR(n) 6.73.10 -s 3.53.10-4 4.91.10 -4 

0 = 0 . 2  er(Q) b= 1.15.10 -2 n p m : =  1.45% 

ABS 4.60.10 -2 3.49.10-2 2.55.10 -2 

MLR(n) 4.65.10 -2 3.44.10-2 2.51.10 ~ 

a n, kinetic exponent, Ink o, logarithm of pre-exponential factor, Ea, activation energy (kJ tool -l ) 
b theoretical parameters used for the simulations: Q=77 J, n=2,  lnko= 19, Ea=77 kJ mol -I 

er(x) : relative error on the parameter x 
C npmr: noise to peak maximum ratio, characteristics of the noise: mean=0 and standard deviation 

0=0 .2  

Several thermoanalytical phenomena were generated from various parameters 
incrementation and were used for the learning (420 patterns), for artificial neural 
network. Table 5 gives the relative errors values obtained using the resilient-propa- 
gation algorithm, that always led to a very good accuracy. In the case of noiseless 
data, the resilient-propagation algorithm improves the results by a factor of 10 for 
the enthalpy, by a factor varying from 10 to 100 for the logarithm of the pre-expo- 
nential factor and by a factor of 10 for the activation energy. When noisy data are 
used, the difference between this algorithm and the usual methods is greater, the re- 
sults are improved by a factor of 100 for the enthalpy and for the logarithm of the 
pre-exponential factor and by a factor varying from 100 to 1000 for the activation 
energy. 

Our recent studies tend to reduce the size of the network, to save time during the 
learning phase, without decreasing the precision obtained. We have shown that this 
is possible when a lower number of pattern is used, as with experimental curves 
(even measured simulated curves). In this case, the measured thermoanalytical 
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Table 5 Relative errors obtained for the parameters with the network 

r er(Q) a er(lnko) a er(Ea) a Number of cycles 

0.0 7.00.10 -7 3.36.10 -5 3.05-10 -5 100000 
0.0 8.60.10 -7 2.78.10 -5 5.18.10 -5 
0.0 4.80.10 -7 3.55.10 "~ 5.13-10 -5 

0.2 1.04.10 -4 4.55.10-4 2.82.10-4 30000 
0.2 1.09.10-4 2.67.10 -4 3.68.10 -3 
0.2 9.97-10 -5 1.28.10-4 1.07-10 -4 

0.2 1.04-10 "~ 4.80-10-4 2.61-10-4 40000 
0.2 1.02.10-4 4.30.10-4 2.57-10 -5 
0.2 1.00.10-4 1.36.10-4 8.93-10 -5 

0.2 1.02.10 -4 5.32-10-4 2.63-10 -4 100000 

0.2 1.03.10-4 4.82.10-4 2.70-10 -4 

0.2 1.05.10-4 1.88-10-4 9.19-10 -5 

a For abbreviations see Table 4 

curves are the inputs of the network and the kinetic parameters of the electrically 
generated Joule effects are used as targets values. All the results concerning this 
part are not yet exploited. On the other hand, the targets can directely be the powers 
values of the thermoanalytical curves, so that no reconstruction of the curve, using 
a given kinetic model, is necessary. 

Conclusion 

Thermodynamic and kinetic parameters may be computed from calorimetric 
data by using neural networks. In this work, the optimization of the network topol- 
ogy has been made, as well as the selection of the best learning function. The well 
known backpropagation algorithm have led to very high values of the error com- 
pared to the resilient-propagation algorithm, because of the existence of local min- 
ima. Furthermore, neural networks are highly tolerant to the presence of noisy sig- 
nals. The results obtained in this study in which a high decrease of the relative er- 
rors has been found in all cases and especially in the case of noisy signals, in com- 
parison with the usual methods, confirm this finding. This signifies that neural net- 
works may be used for the determination of thermodynamic and kinetic parameters 
from the analysis of calorimetric data, as well as for the filtering of calorimetric 
signals. 

Thermal effects with known thermodynamic and kinetic parameters, have been 
generated electrically, using a PC computer, an electronic interface and an inconel 
thread. Then, these effects have been measured by the apparatus and the difference 
between the input signal and the measured one have been shown for various scan- 
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ning rates. These first results are very promising and encourage us in the use of 
neural networks for the development of our deconvolution method applicable to the 
study of materials being transformed. These measured signals will be used for the 
training of the network, while the known parameters of the curve (or the power val- 
ues) will be set as ,targets, values. In this way, the network will be able to account 
for the transfer function of the apparatus (deconvolution) and for the noise (filter- 
ing). In a more simple way, neural networks can be used for calibration of the 
power and of the temperature of any thermal analysis apparatus, using simulated 
thermal effects. 
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